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Mikaël Pichot∗

IHES, 35 Route de Chartres, F-91440 Bures-sur-Yvette, France.

e-mail: pichot@ihes.fr

ABSTRACT

Harmonic analysis is applied in a quasi-periodic context to get rigidity

results in orbit equivalence theory.

1. Introduction

In his paper “Random walk on random groups” Gromov devised a set of tools

to establish general fixed point theorems for finitely generated groups acting

isometrically on non-positively curved spaces [19]. The underlying techniques,

which have their origins in harmonic analysis, are aimed at deriving the ex-

istence of fixed points from a local property of the acting group called the

‘λ1 > 1/2 criterion’.

The purpose of the present paper is to develop these tools in a measure

theoretic dynamical framework. Our original motivation stems from the con-

struction of quasi-periodic affine triangle buildings and the existence of minimal

sublaminations of the space of triangle buildings [3, 4]. Affine triangle buildings

are typical examples of polyhedra satisfying the λ1 > 1/2 local criterion.

As is well-known since the work of Eells-Sampson [11], variational principles

(consisting of minimizing certain energy functionals, usually along the heat flow)

lead to the existence of harmonic mappings between Riemannian manifolds

when both are compact and the target has non-positive sectional curvature.
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This approach has proved to be very flexible. Harmonicity extends to a variety

of contexts and makes sense for mappings between more general spaces, allowing

(simplicial) singularities, equivariance with respect to group actions, etc. This

applies, for instance, to the superrigidity of lattices, especially in the rank one

and the p-adic cases, and provides geometric approaches to Margulis’ celebrated

superrigidity theorem for higher rank lattices (at least in the uniform case). See

[20, 12] and the references therein for more details.

The λ1 > 1/2 criterion originated in the work of Garland [16], who proved a

remarkable vanishing theorem for the low dimensional cohomology of lattices in

higher rank p-adic groups. See [16, 6, 7, 34, 2, 25, 31, 32, 19, 17, 30, 35, 28, 21] for

subsequent developments. The most recent results, in which we are presently

interested, consist of general non-linear fixed point theorems for various

kinds of ‘λ1 > 1/2 groups’ acting on various kinds of non-positively curved

spaces (see, in particular, [31, 32, 19, 21]).

We are primary concerned with measured dynamical systems and measured

equivalence relations. In the early eighties the rigidity of lattices in higher rank

Lie groups has been recognized at the level of their probability measure preserv-

ing actions on standard Borel spaces via Zimmer’s famous cocycle superrigidity

theorem. This phenomenon, which exhibits strong orbit equivalence rigidity

properties of certain measure preserving actions, received much attention in the

last five years with the fundamental work of Furman, Gaboriau, Monod-Shalom,

and Popa (see, for instance, [14, 15, 24, 29]).

Before going any further let us recall some classical concepts in orbit equiva-

lence theory and measured equivalence relations [13, 9, 15]. Let X be a standard

Borel space, R an equivalence relation on X with countable classes. One says

that R is Borel if its graph R ⊂ X × X (the couples of equivalent points) is a

Borel subset of X × X . Given two Borel equivalence relations R and R′ with

countable classes on standard Borel spaces X and X ′ respectively, one says that

a Borel map π : X → X ′ is an homomorphism from R to R′ if x ∼R y implies

that π(x) ∼R′ π(y). A Borel equivalence relation on X with countable classes

is called a measured equivalence relation if X is endowed with a quasi-invariant

probability measure. Quasi-invariance means that the saturation of a negligible

Borel subset of X is still negligible (if in addition the measure of every Borel

subset is preserved by the dynamic, then the measure is called invariant). The

graph of a measured equivalence relation is endowed with the canonical measure

class for which the projection onto the first component is non-singular.
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A graphing of a Borel equivalence relation R (with countable classes) is a

Borel subset K ⊂ R such that the increasing union
⋃

n Kn is equal to R,

where Kn = {(x0, xn) ∈ R : ∃x1, . . . , xn−1 ∈ X, (xi, xi+1) ∈ K} is the n-

th convolution product of K. In this case each class of R is endowed with a

connected graph structure, where by definition an edge is present between

x, y ∈ X if and only if (x, y) ∈ K. A graphing is called a triangulation if the

minimal cycles in these graphs all have length 3. Given a triangulation K, the

link Lx at a vertex x ∈ X is the sphere of radius 1 centered at x in the graph

structure on the equivalence class of x. This definition extends to measured

equivalence relations with the usual ‘up to a negligible set’ decorations. In this

case one defines the volume of K to be the average number (with respect to

the given probability measure on X) of non-oriented simplexes in K. (Compare

with Section 3.)

Let L be a finite connected graph and Y be a metric space. One defines

λ1(L, Y ) to be the largest constant λ such that the following inequality

1

2τ

∑

u,v∈L(0)

|f(u) − f(v)|2τ(u)τ(v) ≤ 1

λ

∑

(u,v)∈L(1)

|f(u) − f(v)|2

holds true for any map f : L(0) → Y , where τ(u) is the valence of a vertex

u ∈ L(0), τ is the number of edges in L, and |y − z| is the distance between y

and z in Y . This constant has been introduced by Gromov and the case Y = R

gives back the usual definition of λ1(L) as the first non-zero eigenvalue of the

Laplace operator on L, see [19] (see also [32]).

We are interested in measured equivalence relations admitting a triangulation

almost all of whose links Lx satisfy the condition λ1(Lx) > 1/2, uniformly in

x ∈ X . As mentioned above the space of triangle buildings considered in [3, 4]

provides non-trivial examples of ergodic measured equivalence relations satisfy-

ing this condition (note that the existence of non-atomic invariant probability

measures on this space is not known yet). Recall that a measured equivalence

relation on X is said to be ergodic if every invariant measurable subset of X

has measure 0 or 1.

Let us first state two corollaries (see Section 6) of the fixed point theorem

proved below (Theorem 3). The definition of CAT(0) spaces is recalled in

Section 2.

Setup for the corollaries. Fix a standard probability space (X, µ), an

ergodic equivalence relation R on X , and assume that the probability measure
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µ is invariant with respect to R. Consider a triangulation K of R with finite

volume (with respect to µ) and almost everywhere connected links, and fix a

surjective Borel map π : X → X ′ which is an homomorphism from R to R′.

Corollary 1: Assume that the space X ′ is a Borel transversal of a lamination

F on a compact space M , all of whose leaves are simply connected manifolds

with non-positive sectional curvature. If almost every link Lx of K satisfies the

condition λ1(Lx, `) > λ for all leaves ` of F and a constant λ > 1/2, and if the

following finite energy condition is satisfied
∫

X

∑

(x,y)∈K

|π(y) − π(x)|2dµ(x) < ∞,

then the µ-essential image of π is contained in a single leaf of F .

The “finite energy condition” is satisfied for instance at the topological level,

when X is a compact topological space and the map π is sufficiently continuous.

This corollary roughly says that there is no (finite energy) smoothing of an

equivalence relation satisfying the assumptions (compare to [18]). Recall that

a Borel subset X ′ of M is said to be a transversal of F if its intersection with

every leaf of F is a countable set, consisting of a class of R′.

Corollary 2: Assume that we are given a CAT(0) space Y such that

λ1(L, Y ) > λ for almost all links L of K and a real number λ > 1/2, not

depending on L, and a finitely generated group Γ which is orbit equivalent to

R′. Thus we have an isomorphism Γ n X ′ ' R′ and a corresponding cocycle c

from R′ to Γ. If the following finite energy condition is satisfied,
∫

X

∑

(x,y)∈K

|c(π(x, y))|2Γdµ(x) < ∞,

then any isometric action of Γ on Y has a fixed point.

Here the metric | · |Γ in Γ is the word metric taken with respect to any finite

generating set. Corollary 2, in particular, restricts the set of possible actions of

Γ that are orbit equivalent to R.

We now state the fixed point theorem on CAT(0) spaces, without elaborating

much on the terminology (the precise definitions will be given later on). The

global picture is as follows. There is a ‘quasi-periodic’ source space Σ with a

diffusion ν and a CAT(0) target Y , both are (fibered spaces) endowed with
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an action of a discrete measured groupoid G. Under the assumptions the heat

flow, which is defined on the space of G-equivariant mappings from Σ to Y with

finite energy, converges to a fixed point relative to ν.

Theorem 3: Let G be a discrete measured groupoid and (Σ, λ, ν) be a G-

quasi-periodic symmetric diffusion space. Any complete CAT(0) G-space Y for

which there is a finite energy equivariant map f : Σ → Y , and which satisfies

the (Poincaré type) condition πf
2(Σ, Y ) < 2, has a fixed point relative to ν at

finite L2-distance from f.

This theorem is due to M. Gromov in the case of countable discrete groups

(see [19, page 125]). Using an “integral geometry argument” à la Garland,

he then deduced a fixed point theorem for 2-dimensional simplicial complexes

Σ satisfying the λ1 > 1/2 local criterion. This fixed point theorem has been

obtained independently by Izeki and Nayatani [21] and corresponds to Theorem

18 in the present paper. We mention that Izeki and Nayatani are using a

definition of λ1 introduced by Wang [32], different from the one above and which

behaves better with respect to (some) tangent cones. The first non-linear fixed

point theorem was proved by Wang in [31, 32]. The proof we give here follows

Section 3 in [19] as carefully as possible, although we will in some places be

content with technical arguments (other alternatives are probably laid down in

[19]). As often with this type of result the proof confronts a deformation process

to a local rigidity property. The linear case (when Y is a Hilbert space) was

studied in [28], following [19, 17]. The “finite energy assumption” appearing in

the theorem comes from the direct use of harmonic techniques: the existence of

finite energy mapping Σ → Y is required in order to start the diffusion process

(this assumption is always satisfied in the situation of [19, 21]).

It is a pleasure to express my thanks to Damien Gaboriau, Étienne Ghys,

Pierre Pansu and Georges Skandalis for enlightening discussions, and to the

referee for useful remarks which helped improving the presentation of the text.

2. Metric spaces of non-positive curvature

A general reference for non-positively curved spaces is [5]. We shall only recall

here the background material for the main theorems. We follow [19, Section 3].

The relevant property of the target space which allows to define the heat flow is
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the presence of a codiffusion from probability measures on this space back to

the space itself. The terminology for the inequalities appearing below follows

[19] as well.

We will use the following elementary estimate.

Lemma 4: For any non-negative real numbers a1, . . . , an one has
(
∑n

i=1 ai

)2 ≤
∑n

i=1 a2
i /ti where t1, . . . , tn are positive and satisfy

∑n
i=1 ti = 1.

Proof. Minimize the function
∑n

i=1 a2
i /ti under the constraint

∑n
i=1 ti = 1

(Lagrange multipliers).

2.1. Convexity properties of geodesic metrics. Let Y be a complete

metric space with metric d. Recall that d is said to be geodesic if any two

points of Y can be joined by a geodesic segment in Y , that is, an isometric

embedding of some interval of the real line into Y . One says that Y is a

CAT(0) space if d is geodesic and satisfies the following inequality.

CAT(0) inequality. For any point y of Y , any geodesic segment γ in Y with

end points y0, y1 ∈ Y , and any point yt at a fraction t ∈ [0, 1] from y0 to y1 on

γ, one has

|y − yt|2 ≤ (1 − t)|y − y0|2 + t|y − y1|2 − t(1 − t)|y0 − y1|2,(1)

where we note d(y0, y1) = |y1 − y0|.

The inequality shows that there is a unique geodesic segment [u, v] between

any two points u, v, and that the map |y − · |2 is strictly convex on this seg-

ment. Hence there exists a unique point on any geodesic segment (or line) re-

alizing the distance to a given point y. Examples of CAT(0) spaces range from

(the most negatively curved) trees to (flat) Hilbert spaces, including complete

simply connected Riemannian manifolds with non-positive sectional curvature

and Bruhat-Tits buildings. Note that the CAT(0) inequality is an equality for

Hilbert spaces (by taking coordinates it is sufficient to check it for the real

line), and accordingly that a strict inequality indicates negative curvature. Any

complete CAT(0) space is contractible to a point.

As described by the following inequality, the growth of the squared distance

|y − · |2 to a given point y ∈ Y along geodesic lines is actually parabolic.
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2-convexity inequality. Let γ be a geodesic segment and y0 ∈ γ be the

closest point to y. Then for y` ∈ γ at distance ` from y0 one has

|y − y`|2 ≥ `2 + |y − y0|2.(2)

Proof. This is immediate from the CAT(0) inequality (1) for the closest point

y0 ∈ γ and yt → y0:

0 ≤ |y − yt|2 − |y − y0|2
|y0 − yt|

≤ t

|y0 − yt|
(|y − y`|2 − |y − y0|2) − |y` − yt|

where |y0 − yt| = t|y0 − y`|.

2.2. Barycentric codiffusion and averaged convexity inequalities.

Let Y be a complete CAT(0) space.

Definition 5: A codiffusion on Y is a map c from the space P2 of probability

measure on Y with finite second moment to Y , such that c(δy) = y and c−1(y)

is convex for any y ∈ Y .

Here P2 is the (convex) space of probability measure ν on Y satisfying the

condition

|ν − y|2 =

∫

Y

|y − z|2dν(z) < ∞

for any y ∈ Y .

Example 6: In the Hilbert case, the canonical codiffusion is the affine map

c(ν) =
∫

Y
ξdν(ξ).

Averaging the CAT(0) inequality with respect to ν ∈ P2,

|ν − yt|2 ≤ (1 − t)|ν − y0|2 + t|ν − y1|2 − t(1 − t)|y0 − y1|2,

leads to the 2-convexity of the function |ν − · |2 on geodesics, as for |y − · |2.
It is intuitively clear that a continuous functions f from Y to R+, which is

2-convex on every geodesic segments in Y (i.e. which satisfies the inequality (2)

for a point y0 realizing a minimum of f on γ), has a unique global minimum in

Y . For a proof observe that the level sets {f ≤ t} of such a function all have

bounded diameter, less than 2
√

t − m, which goes to 0 as t goes to the infimum

m of f , by 2-convexity.
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The barycentric codiffusion is defined for any complete CAT(0) space Y

in the following way. Let ν ∈ P2 be a probability measure on Y . The function

|ν − · |2 defined above has a unique minimizer c(ν) ∈ Y , called the center of

mass of ν. The barycentric codiffusion is the map c : ν 7→ c(ν). (For a more

general probability measure ν /∈ P2, the minimizer is not well-defined a priori,

it might for instance fall into the boundary of Y .) Note that the barycentric

codiffusion is equivariant with respect to the isometry group of Y .

Summing up, one has the following result.

Averaged 2-convexity inequality. Let ν ∈ P2 and γ be a geodesic seg-

ment. Denote by y0 the closest point to ν on γ, which minimizes |ν − · |2 on γ.

Then for y ∈ γ at distance ` from y0 we have,

|ν − y|2 ≥ `2 + |ν − y0|2.(3)

This, for geodesics containing c(ν), reads

|ν − y|2 ≥ |y − c(ν)|2 + |ν − c(ν)|2(4)

for any y ∈ Y .

2.3. Averaged and polygonal inequalities. Integrating in y the averaged

2-convexity inequality (4) leads to the following inequality (henceforth referred

to as a Wirtinger inequality),

|c(ν) − ν|2 ≤ 1

2

∫

Y ×Y

|y − z|2dν(y)dν(z),(5)

which for the uniform probability measure on 4 points gives, as an important

particular case, the quadrilateral inequality: in any quadrilateral, the sum

of the squared length of the diagonals is not greater than the sum of the squared

length of the edges. More precisely,

|z1 − z3|2 + |z2 − z4|2 ≤ |z1 − z2|2 + |z2 − z3|2 + |z3 − z4|2 + |z4 − z1|2,(6)

for z1, z2, z3, z4 ∈ Y . This is clear if the 4 points are in the euclidean plane (as

well as for Hilbert spaces) by taking coordinates. In Y this follows directly from

2-convexity, considering the measure ν = 1/2(δz1 + δz3), ν′ = 1/2(δz2 + δz4),

and integrate the ν-averaged 2-convexity inequality with respect to ν′,

1/4(|z1 − z2|2 + |z2 − z3|2 + |z3 − z4|2 + |z4 − z1|2) ≥ 1/2
4

∑

i=1

|c(ν) − zi|2.
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As |z1 − z3|2 ≤ 2(|c(ν)− z1|2 + |c(ν)− z3|2), this gives the result. Alternatively

one can simply use the Wirtinger inequality directly with the uniform measure

ν = 1/4
∑

i δzi
, as stated above.

One deduces the continuity of the center of mass of ν ∈ P2 with respect to

the displacement of the mass ν as follows. For ν, ν′ ∈ P2 define ‖ν − ν′‖2
2 =

infπ

∫

Y ×Y
|y−z|2dπ(y, z), where the infimum is taken over the probability mea-

sure π on Y × Y with marginals ν and ν′. Then,

|c(ν) − c(ν′)| ≤ ‖ν − ν′‖2.(7)

(barycentric contraction of the L2 transportation metric). Indeed, integrating

the quadrilateral inequality with respect to dπ(z3, z4) and putting z1 = c(ν′),

z2 = c(ν), we get

|c(ν′)− ν|2 + |c(ν)− ν′|2 ≤ |c(ν)− c(ν′)|2 + |c(ν)− ν|2 +‖ν− ν′‖2
2 + |c(ν′)− ν′|2,

thus the inequality follows from the averaged 2-convexity inequality (for y =

c(ν), c(ν′)).

Let us conclude this section by observing that the above quadrilateral

inequality can be sharpened in the following way (these types of inequalities

follow from the work of Reshetnyak, cf. Korevaar-Schoen [23, page 621]).

Quadrilateral inequality. Given four points z1, z2, z3, z4 in Y we have,

|z1 − z3|2 + |z2 − z4|2 ≤ 2|z1 − z2||z3 − z4| + |z2 − z3|2 + |z4 − z1|2.(8)

Proof. Take ν = (1 − t)δz1 + tδz3 and ν′ = (1 − t)δz2 + tδz4 and integrate the

ν-averaged 2-convexity inequality with respect to ν′,

(1 − t)2|z1 − z2|2 + (1 − t)t|z1 − z4|2 + (1 − t)t|z3 − z2|2 + t2|z4 − z3|2

≥ (1 − t)|c(ν) − z1|2 + t|c(ν) − z3|2 + (1 − t)|c(ν) − z2|2 + t|c(ν) − z4|2.

Using the fact that (a + b)2 ≤ a2/t+ b2/(1− t) for non-negative numbers a and

b (Lemma 4) we get (1 − t)t|z1 − z3|2 ≤ (1 − t)|c(ν) − z1|2 + t|c(ν) − z3|2 (for

a = |c(ν) − z1|, b = |c(ν) − z3|, |z1 − z3| ≤ a + b). So

|z1 − z3|2 + |z2 − z4|2 ≤ 1 − t

t
|z1 − z2|2 + |z1 − z4|2 + |z3 − z2|2 +

t

1 − t
|z4 − z3|2,

and as (1 − t)/t takes all positive values one can now set (1 − t)/t = |z4−z3|
|z1−z2|

instead of 1.
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The previous proof of the barycentric contraction property works as well for

the version (8) of the quadrilateral inequality and yields the following result.

Barycentric contraction of the L1 transportation metric. For

ν, ν′ ∈ P2 define ‖ν − ν′‖1 = infπ

∫

Y ×Y
|y − z|dπ(y, z), where the infimum

is taken over the probability measure π on Y × Y with marginals ν and ν′.

Then

|c(ν) − c(ν′)| ≤ ‖ν − ν′‖1.(9)

Proof. Integrating the quadrilateral inequality with respect to dπ(z3, z4) and

putting z1 = c(ν′), z2 = c(ν) we get,

|c(ν′)−ν|2+|c(ν)−ν′|2 ≤ 2|c(ν)−c(ν′)|
∫

|y−z|dπ(y, z)+|c(ν)−ν|2+|c(ν′)−ν′|2,

thus the inequality follows from the averaged 2-convexity inequality.

3. Quasi-periodic spaces and isometric representations

We now describe the (quasi-periodic) source space, where the diffusion takes

place. We assume all diffusions to be symmetric relative to a fixed covolume.

Every diffusion has an energy associated to it, defined on mappings with values

in some metric space. The rôle of the Poincaré inequalities is to relate the

energies of differently spread diffusions.

3.1. Discrete measured groupoids and quasi-periodic spaces. Our ref-

erence for measured groupoids is [1]. A groupoid G is a set of transformations

γ ∈ G between points in a base space X ,

γ : y → x,

where y = s(γ) ∈ X and x = r(γ) ∈ X are respectively the source and the

range of γ, subject to the usual algebraic requirements that X is the object

space of a small category all of whose morphisms γ ∈ G are invertible. Then

X = {γ ∈ G : γγ = γ} ⊂ G, where s(γ) = γ−1γ and r(γ) = γγ−1, and the

fibered product

G ×X G = {(γ′, γ) ∈ G × G : r(γ) = s(γ′)}
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describes the family of composable transformations. The isomorphism relation

between objects of this category is an equivalence relation R ⊂ X × X on X

(the image of the map (r, s) : G → X × X). We denote by Gx the set of γ ∈ G

such that r(γ) = x and Gy the set of γ ∈ G such that s(γ) = y. A groupoid is

called discrete if Gx is a countable set for any x ∈ X .

A Borel groupoid is a groupoid G endowed with a standard Borel structure

such that the source map and the range map s, r : G → X , the composition map

G×X G → G and the inverse map G → G are Borel, where the Borel structure

on X and G ×X G come from the inclusions in G and G × G. A discrete

measured groupoid is a discrete Borel groupoid endowed with an invariant

measure class on X (i.e., the negligible sets of some probability measure on X).

We will call this class the measure class of G. Recall that a measure class on

X is said to be invariant if the saturation of a negligible Borel subset of X is

again negligible (where the saturation of A ⊂ X by G is the union of the ranges

of the transformations γ ∈ G with source in A). As G is discrete, the measure

class on X gives a canonical measure class on G. A Borel subset K ⊂ G is

negligible if and only if its projection r(K) is negligible in X .

Example 7: Let Γ be a countable group and α be an action of Γ on a stan-

dard probability space (X, µ) preserving the measure class of µ. Then the

set G = qx∈X qγ∈Γ (γx, x) is a discrete measured groupoid for the natural

Borel structure and the class of µ. It is denoted by G = Γ n X . The map

(r, s) : G → X ×X projects G to the equivalence relation R ⊂ X ×X given by

the orbit partition. G coincides with R if and only if α is free.

Let G be a discrete Borel groupoid with base space X . A fibered Borel

space over X is a standard Borel space Σ together with a surjective Borel

projection r : Σ → X . The fiber at x is denoted by Σx = r−1(x). The

reduction of Σ to a Borel set A ⊂ X is the measurable fibered space ΣA =

r−1(A), over A. A Borel section of Σ is a Borel map u : X → Σ such that

u(x) ∈ Σx for x ∈ X . A Borel action ρ of G on Σ is a collection of Borel

isomorphisms

ρ(γ) : Σs(γ) → Σr(γ),

indexed by γ ∈ G, such that the map ρ : G ×X Σ → Σ is Borel and satisfy the

cocycle condition γ′(γu) = (γ′γ)u for every composable elements γ, γ′ ∈ G, and

γu = u when γ ∈ X , where we denote ρ(γ, u) = ρ(γ)u = γu. One says that
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an action is free if the equality γu = u implies γ = x for every u ∈ Σx and

every x ∈ X . A fundamental domain for the action of G is a Borel subset

F ⊂ Σ which contains exactly one point in each G-orbits in Σ. Let now G be

a discrete measured groupoid over a probability space (X, µ) and Σ be a Borel

fibered space over X . A reduction of Σ to a subset A of X is called inessential

if A has negligible complement in X . By a measurable action of G on Σ we

mean a Borel action of an inessential reduction GA of G on ΣA. One defines the

notion of (essentially) free actions and (essential) fundamental domains in that

context by relaxing the above conditions to inessential reductions. Although

the terminology is abusive without irreducibility assumption on G (as ergodicity

for example), we will in the present text use the word ‘quasi-periodic’ in the

following sense—compare to [26, 27]. More details on Borel G-spaces can be

found in [8, 15].

Definition 8: Let G be a discrete measured groupoid. A G-quasi-periodic stan-

dard Borel space is a measurable fibered space Σ endowed with an essentially

free measurable action of G with fundamental domain.

In this case we call the projection r : Σ → X the realization map. The

fibers Σx, x ∈ X , are called realizations of the quasi-periodic space Σ. Note

that G itself is a quasi-periodic standard Borel space, and the realization map

coincide with the range map.

3.2. Covolumes on quasi-periodic standard Borel spaces. Let G be a

discrete measured groupoid and Σ be a G-quasi-periodic standard Borel space.

Denote by BG(Σ) the σ-algebra of Borel subsets of Σ which are invariant under

the action of G (quasi-periodic Borel subsets), and B
x
G(Σ) its trace on the

realization Σx, so that γ(B
s(γ)
G (Σ)) = B

r(γ)
G (Σ).

A Borel system of measures on a Borel fibered space (Σ, B) is a family

(λx)x∈X of measures on Σ such that

- λx is supported on the realization Σx for every x ∈ X ,

- there exists an exhausting sequence of Borel sets An ⊂ Σ such that

λx(An) < ∞ for every x ∈ X (σ-finiteness),

- for any non-negative Borel map f on Σ, the map x 7→ λx(f) is Borel.

A covolumic system on a G-quasi-periodic standard Borel space Σ is a

Borel system of measure such that λx is a measure on the σ-algebra B
x
G(Σ), for
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every x ∈ X . For instance, given a fundamental domain F ⊂ Σ, one can set

λx(A) = αx(A ∩ F ), where (αx)x∈X is Borel system of measures on F .

A covolume on Σ is a measure on (Σ, BG(Σ)) of the form λ(A) =
∫

X
λx(A)dµ(x), where (λx)x∈X is a covolumic system and µ a measure on

X in the class of G. We call the couple (Σ, λ) a G-quasi-periodic mea-

sured space. The projection p : Σ → Σ/G then induces an isomorphism

L∞(Σ, λ) → L∞(Σ/G, p∗λ).

3.3. Isometric representations of discrete groupoids. Let G be a dis-

crete measured groupoid with base space X . A measurable field of metric

spaces Y → X over X consists of a metric space (Y x, dx) for each x ∈ X whose

total space Y = qx∈XY x is endowed with a standard Borel structure such that

- the inclusion Y x ⊂ Y is a Borel isomorphism on its image, for every

x ∈ X ,

- the natural projection r : Y → X is a Borel map (thus Y → X is a

fibered Borel space),

- the metric d : Y ×X Y → [0,∞[ is a Borel map.

An isometric action of G on Y is a Borel action ρ of G on Y such that, up to

an inessential reduction, the map ρ(γ) : Y s(γ) → Y r(γ) is an isometry for any

γ ∈ G. In this case Y is called a metric G-space. We will always assume that

Y is complete (almost each fiber is complete) and separable (there is a Borel

set D ⊂ Y which is countable and dense in restriction to each fiber Y x).

Examples 9: 1 - Let H be a separable Hilbert space and (X, µ) be a probability

space. The product space H̄ = X × H is a measurable field of metric spaces

over X in a natural way (for the product Borel structure), and the measurable

sections ξ : X → H̄ coincide with that of measurable map X → H . The scalar

product on H integrates to a measurable map on H̄ ×X H̄ and one recovers in

this way the classical notion of measurable field of Hilbert spaces [10], as every

such a bundle is trivializable up to dimension considerations. In this case, an

isometric action of G is called an affine (isometric) representation of G on H̄ .

2 - A topological fibered bundle over a polish space is in particular a measur-

able field of metric spaces (when endowed with a Borel family of metrics along

the fiber), usually non-trivializable at the topological level.

3 - Quasi-periodic metric spaces provide interesting classes of metric G-spaces

(see [26]).
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3.4. Equivariant mappings to metric spaces. Let Σ be a G-quasi-perio-

dic measured space with covolume λ and Y be a metric G-space as above. A

measurable fibered map f : Σ → Y is said to be equivariant if

f(γu) = ρ(γ)f(u)

for any x ∈ X , γ ∈ Gx and u ∈ Σx. For instance, the quasi-periodic functions

on Σ are the equivariant functions to C endowed with the trivial action of G

(that is, the action of G on X×C, with ρ(γ) = 1 for every γ ∈ G). For arbitrary

spaces Y , equivariant maps can be constructed by choosing their values on a

fundamental domain and extending by equivariance.

One defines the distance between two equivariant maps f, g : Σ → Y by the

expression

‖f − g‖2 =

∫

Σ

|f(u) − g(u)|2dλ(u),

and denotes L2
G(Σ, Y ) the space of equivariant map which are at bounded dis-

tance ‖f − f‖ < ∞ from some fixed equivariant f : Σ → Y , where as usual, we

identify two functions if they coincide λ-almost everywhere.

A complete CAT(0) G-space is a metric G-space whose fibers Y x are

almost surely complete CAT(0) spaces. One denotes by P2 the space of Borel

systems of probability measures on Y with almost everywhere finite second

moment. If ν ∈ P2, the barycentric codiffusion cx on Y x for each x ∈ X

associated to νx its center of mass cx(νx), and the map c : x 7→ cx(νx) is Borel.

This map is called the barycentric codiffusion of the CAT(0) G-space Y .

Lemma 10: If Y is a complete CAT(0) G-space, then L2
G(Σ, Y ) is a complete

CAT(0) space as well.

Proof. Up to an inessential reduction we can assume that each realization is a

complete CAT(0) space. The completeness of L2
G(Σ, Y ) follows from that of Y

as usual. Let f0, f1 ∈ L2
G(Σ, Y ). For any u ∈ Σx there exists a unique geodesic

segment (ft(u))t∈[0,1] in Y x from f0(u) to f1(u). Then t → ft is a geodesic from

f0 to f1, and given g ∈ L2
G(Σ, Y ), the punctual CAT(0) inequality

|g(u)−ft(u)|2 ≤ (1− t)|g(u)−f0(u)|2 + t|g(u)−f1(u)|2− t(1− t)|f0(u)−f1(u)|2

integrates with respect to the covolume to give the CAT(0) inequality in

L2
G(Σ, Y ).
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3.5. Diffusions and symmetry of diffusions. Let Σ be a G-quasi-perio-

dic standard Borel space. A (quasi-periodic) diffusion on Σ is a map ν which

associates to each u ∈ Σx a probability measure νu on Σ such that,

- νu vanishes outside Σx,

- for any measurable map

f : Σ ×X Σ → R+,

the map u 7→
∫

Σ f(u, v)ν(u → v)dv is measurable on Σ, where we note

dνu(v) = ν(u → v)dv,

- γ∗(νu) = νv for any γ ∈ G such that γ(u) = v.

Example 11: Assume moreover that the probability measures νu have finite

support, and denote ν(u → v) the probability νu(v) to go from u to v in Σ.

Such a diffusion is called a random walk on Σ. One can insist on generating

properties of ν by assuming that there is only one trajectory in every realization.

We shall say that a diffusion is symmetric with respect to a covolume λ on

Σ if it satisfies the following condition, where a map f on Σ ×X Σ is called

invariant if it is invariant under the diagonal action of G.

Symmetry condition. For any non-negative invariant map f on Σ ×X Σ,

∫

Σ

∫

Σ

f(u, v)ν(u → v)dvdλ(u) =

∫

Σ

∫

Σ

f(u, v)ν(v → u)dudλ(v)

When the symmetry condition is satisfied, we call the triple (Σ, ν, λ) a G-

quasi-periodic diffusion space. A system which does not diffuse (that is, if

ν(u → v)dv = dδu(v) is the Dirac measure at u ∈ Σ) is obviously symmetric. In

what follows we will mainly be interested in diffusion that are both symmetric

and generating.

3.6. Energy of equivariant mappings. Let (Σ, ν, λ) be a G-quasi-periodic

diffusion space and (Y, d) be a complete metric G-space. Given a measurable

equivariant fibered map f : Σ → Y one sets for any u, v ∈ Σx,

df(u)(v) = f(v) − f(u) ∈ Conf(u)Y
x
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the discrete derivative of f , defined (if Y is a CAT(0) space) by projecting f(v)

on Conf(u)Y
x, or simply via the local energy map,

|df |2ν(u) =

∫

Σ

|df(u)(v)|2ν(u → v)dv =

∫

Σ

|f(v) − f(u)|2ν(u → v)dv.

The energy of f is

Eν(f) =
1

2

∫

Σ

|df |2νdλ.

When there is only one diffusion we drop the subscript ν in the notation Eν .

(We recall that the tangent cone Cony(Y ) of a complete CAT(0) space Y at a

point y ∈ Y is the cone over the space Sy(Y ) of direction at y, see [5]. This is a

complete CAT(0) space as well and there is a distance non-increasing projection

Y → Cony(Y ) which preserves the distance to y.)

Lemma 12: The energy function E on L2
G(Σ, Y ) is either everywhere finite or

everywhere equal to ∞.

Proof. For f, g ∈ L2
G(Σ, Y ) we have

|f(v) − f(u)|2 ≤ 3|f(v) − g(v)|2 + 3|g(v) − g(u)|2 + 3|g(u) − f(u)|2

so that E(f) ≤ 3E(g) + 3‖f − g‖2, using the symmetry condition.

In order to apply harmonic analysis we shall make from now on the following

finite energy assumption,

E(f) < ∞ for any f ∈ L2
G(Σ, Y ).

Note that the convexity of the energy follows immediately from the CAT(0)

inequality for non-positively curved target spaces.

Definition 13: A fixed point for the diffusion ν is a mapping f ∈ L2
G(Σ, Y )

which is ν(u → )-almost surely constant for almost all u ∈ Σ.

Equivalently a fixed point is a map of zero energy. When the diffusion is

“sufficiently generating” (as in Corollaries 1 and 2, for instance), fixed points

relative to ν ranges into actual fixed points for the action of G on Y .

3.7. Convolution of diffusions and Poincaré constant. The convolu-

tion ν ∗ ν′ of two symmetric diffusions ν and ν′ on (Σ, λ) is the symmetric
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diffusion defined by the expression
∫

Σ

f(u, v)ν ∗ ν′(u → v)dv =

∫

Σ

(
∫

Σ

f(u, v)ν′(w → v)dv

)

ν(u → w)dw

for non-negative invariant f on Σ ×X Σ. The 2-steps diffusion associated to ν

is the diffusion ν2 = ν ∗ ν.

Given a G-quasi-periodic diffusion space Σ and a complete metric G-space Y

o ne defines the following Poincaré constant

π2(f) = Eν2(f)/Eν(f)

for equivariant f and π2 = π2(Σ, Y ) = supf π2(f) over f ∈ L2
G(Σ, Y ) with

non-zero energy. Following [19], we will prove (under additional curvature as-

sumptions on Y yielding convexity of E as well as gradient flows) the existence

of fixed points when π2(Σ, Y ) < 2.

4. Heat equation and harmonic analysis

The content of this section is the proof of the fixed point theorem stated in the

introduction (Theorem 3). We follow as closely as possible the proof given by

Gromov [19, Section 3] in the group case, and we continue to assume finiteness

of the energy as described in Section 3.

4.1. Heat operators. Let G be a discrete measured groupoid, (Σ, λ, ν) be a

G-quasi-periodic diffusion space and Y be a complete CAT(0) G-space with the

barycentric codiffusion c. Denote by ν(u
ε→ ) the ε-mass-transportation from

δu to ν(u → ),

ν(u
ε→ ) = (1 − ε)δu + εν(u → ),

ε ∈ [0, 1]. The heat operators H
ε
→ are defined to be the centers of mass of

the push-forward f∗ν(u
ε→ ),

H
ε
→f(u) = cr(u)(f∗ν(u

ε→ )),

for f ∈ L2
G(Σ, Y ).

Lemma 14: The heat operators H
ε
→ are well-defined on L2

G(Σ, Y ).

Proof. Let f ∈ L2
G(Σ, Y ). As we assumed that E(f) < ∞, we get

∫

|f(u) − f(v)|2ν(u → v)dv < ∞
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for a.e. u ∈ ΣX , thus for any y ∈ Y r(u),
∫

|y − f(v)|2ν(u → v)dv ≤ 2|y − f(u)|2 + 2

∫

|f(u) − f(v)|2ν(u → v)dv

follows finite as well. A similar computation using 2-convexity gives H
ε
→f ∈

L2
G(Σ, Y ) where, by L2 contraction of the transportation metric, we have that

H
ε
→ contracts the L2 metric (and the same for the L1 metric).

Note that H
1
→f = f if and only if H

ε
→f = f for any ε by the definition of

codiffusions. In this case f is called harmonic. There are Laplace operators

associated to H
ε
→, which we will not need, and which are defined by diffusing

around u and comparing the image by f of this diffusion with the punctual

image f(u) (e.g. ∆εf(u) = ε−1(f(u) − H
ε
→f(u)) where the difference in taken

in Conf(u)Y
p(u) after projection). See [19, page 97] (and page 106 therein).

The behaviour of the heat flow is governed by the following inequality for

infinitesimal ε ∈]0, 1], which follows immediately from the averaged 2-convexity

inequality (and thus is an equality in the Hilbert space case).

Parabolic growth inequality. Let x ∈ X, u ∈ Σx and y ∈ Y x. Then,
∫

Σ

|y − f(v)|2ν(u
ε→ v)dv ≥|y − H

ε
→f(u)|2(10)

+

∫

Σ

|H
ε
→f(u) − f(v)|2ν(u

ε→ v)dv.

4.2. Poincaré estimates and Kazhdan’s relaxation constant. Let ε ∈
]0, 1] be a fixed real number. For f ∈ L2

G(Σ, Y ) define,

κ
ε
→(f) = 1 − (2ε)−1(1 − Eν(H

ε
→f)/Eν(f)),

κ
ε
→(Σ, Y ) = supf κ

ε
→(f) over f ∈ L2

G(Σ, Y ) with non-zero energy, and denote

κ = κ(0) = κ(Σ, Y ) = limε→0 κ
ε
→(Σ, Y ). These constants are called the Kazh-

dan constants of the diffusion ν [19, page 114]. Recall that the Poincaré

constant π2 of ν is defined at the end of the previous section.

Lemma 15: Given f ∈ L2
G(Σ, Y ) and u ∈ Σ one has

|H
ε
→f(u) − f(u)|2 ≤ ε

∫

|f(u) − f(v)|2ν(u → v)dv
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and

|H
ε
→f(u) − f(u)| ≤ ε

∫

|f(u) − f(w)|ν(u → w)dw.

In particular ‖H
ε
→f − f‖2 ≤ εE(f).

Proof. This follows from the transportation inequalities (7) and (9).

Proposition 16: For any CAT(0) space Y one has π2 > 1 + κ.

Proof. Let f ∈ L2
G(Σ, Y ) be a function with non-zero energy. Taking y =

H
ε
→f(w) in the parabolic growth inequality we have

∫

Σ

|H
ε
→f(w) − f(v)|2ν(u

ε→ v)dv ≥

|H
ε
→f(w) − H

ε
→f(u)|2 +

∫

Σ

|H
ε
→f(u) − f(v)|2ν(u

ε→ v)dv.

Let us integrate this inequality with respect to
∫∫

· · · ν(u → w)dwdλ(u). Using

the symmetry hypothesis on ν this gives

∫

(1 − ε)

∫

|H
ε
→f(u) − f(v)|2ν(u → v)dv

+ ε

∫

|H
ε
→f(u) − f(v)|2ν2(u → v)dvdλ(u)

≥ 2Eν(H
ε
→f)+(1−ε)‖f−H

ε
→f‖2+ε

∫∫

|H
ε
→f(u)−f(v)|2ν(u → v)dvdλ(u).

Similarly we now take y = f(w) in the parabolic growth inequality, giving
∫

Σ

|f(w) − f(v)|2ν(u
ε→ v)dv ≥|f(w) − H

ε
→f(u)|2

+

∫

Σ

|H
ε
→f(u) − f(v)|2ν(u

ε→ v)dv,

and integrate with respect to
∫∫

· · · ν(u → w)dwdλ(u):

2(1 − ε)Eν(f) + 2εEν2(f) ≥
∫∫

|H
ε
→f(u) − f(v)|2ν(u → v)dvdλ(u)

+ (1 − ε)‖f − H
ε
→f‖2

+ ε

∫∫

|H
ε
→f(u) − f(v)|2ν(u → v)dvdλ(u).
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Let us add the two inequalities just obtained. We get

(11)
1

2

∫∫

|H
ε
→f(u) − f(v)|2ν2(u → v)dvdλ(u)

−
∫∫

|H
ε
→f(u) − f(v)|2ν(u → v)dvdλ(u) + Eν2(f) − Eν(f)

− 1

2

∫∫

|H
ε
→f(u) − f(v)|2ν(u → v)dvdλ(u)

≥ ε−1(1 − ε)‖f − H
ε
→f‖2 + ε−1(Eν(H

ε
→f) − Eν(f)).

On the other hand we have the following estimate
∣

∣

∣

∣

∫∫

|H
ε
→f(u) − f(v)|2ν(u → v)dvdλ(u) − 2Eν(f)

∣

∣

∣

∣

≤
∫∫

||H
ε
→f(u) − f(v)|2 − |f(u) − f(v)|2|ν(u → v)dvdλ(u)

≤
∫∫

|H
ε
→f(u) − f(u)|(|H

ε
→f(u) − f(v)|

+ |f(u) − f(v)|)ν(u → v)dvdλ(u)

≤
∫∫

|H
ε
→f(u) − f(u)|2

+ 2|H
ε
→f(u) − f(u)||f(u) − f(v)|ν(u → v)dvdλ(u)

which gives, taking into account Lemma 15,
∣

∣

∣

∣

∫∫

|H
ε
→f(u) − f(v)|2ν(u → v)dvdλ(u) − 2Eν(f)

∣

∣

∣

∣

≤ 2εEν(f) + ε

∫∫

|f(u) − f(w)|2ν(u → w)dwdλ(u)(12)

+ ε

∫∫

|f(u) − f(v)|2ν(u → v)dvdλ(u) = 6εEν(f).

Now by combining (11) and (12) we get

2Eν2(f) − 4Eν(f) + 3εEν2(f) + 9εEν(f)

≥ ε−1(1 − ε)‖f − H
ε
→f‖2 + ε−1(Eν(H

ε
→f) − Eν(f)),

which, after dividing everything by Eν(f) and ignoring the term ‖f − H
ε
→f‖2,

gives,

π2(f) − 2 +
3

2
ε(π2(f) + 3) ≥ κ

ε
→(f) − 1.
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Hence the result.

Proposition 17: If κ(Σ, Y ) < 1, then the diffusion ν has a fixed point.

Proof. Take ε so that κ
ε
→ < 1 and f0 ∈ L2

G(Σ, Y ). Put fi = H
ε
→fi−1. If one of

the fi has zero energy we are done. If not, one has

E(fi+1) ≤ (1 − 2ε(1 − κ
ε
→))E(fi)

by definition of κ
ε
→, so that

∑

i E(fi) < ∞ by assumption. As ‖H
ε
→f − f‖2 ≤

εE(f), the sequence (fi) is Cauchy and thus converge to f∞ ∈ L2
G(Σ, Y ). By

continuity of E we have E(f∞) = 0, so f∞ is a fixed point.

Theorem 3 follows from Proposition 16 and Proposition 17. See also [19, page

125].

5. Poincaré inequalities via integral geometry

5.1. Random walks on finite graphs. Given a finite graph L and a metric

space Y one defines λ1(L, Y ) to be the largest constant λ such that the following

Poincaré inequality

1

2τ

∑

v,w∈L(0)

|f(u) − f(v)|2τ(u)τ(v) ≤ 1

λ

∑

(v,w)∈L(1)

|f(u) − f(v)|2

holds true for any map f : L(0) → Y , where τ(u) is the valence of a vertex

u ∈ L(0), τ is the number of edges in L. When Y = R is the real line one

denotes λ1(L,R) = λ1(L). Thus λ1(L, H) = λ1(L) for any Hilbert space H (by

taking coordinates), while for more general CAT(0) spaces Y one obviously has

λ1(L, Y ) ≤ λ1(L) as any such a Y contains a geodesic line.

5.2. Random walks on quasi-periodic simplicial complexes. Let G be

a discrete measured groupoid, and Σ be a G-quasi-periodic simplicial complex

of dimension 2. We assume almost every realization of Σ to be connected. As

the vertex set Σ(0) of Σ is countable for each realization, the measure class

on G determine, via the projection r : Σ(0) → X , a canonical measure class

on Σ(0) supported on quasi-periodic Borel sets. By a 0-covolume on Σ we

mean a covolume µ which is in this measure class. We assume that Σ has

finite covolume, i.e.
∫

Σ
c(u)dµ(u) < ∞ where c(u) is the number of simplexes

attached to u ∈ Σ.
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Consider the fibered product Σ(0) ×X Σ(0) endowed with the measure class

on quasi-periodic subsets coming from G as above. There are two canonical

measures in this class, the vertical counting measure
∫

∑

v f(u, v)dµ(u) and

the horizontal one
∫

∑

u f(u, v)dµ(v), for non-negative invariant f . Denoting

δ(u, v) the Radon-Nikodỳm derivative we have
∫

∑

v

f(u, v)dµ(u) =

∫

∑

u

f(u, v)δ(u, v)dµ(v)

for non-negative invariant f .

Let ν be a random walk on Σ, that is a diffusion whose probability measures

ν(u → ) are supported on the set of vertices of the realisation containing u,

such that the probability ν(u → v) to go from u to v is not zero if and only if

(u, v) is an edge of Σ. We assume that, almost surely,

ν(u → v)
√

δ(v, u) = ν(v → u)
√

δ(u, v).

Note that this symmetry condition (compare to [28]) also reads
∫

∑

v

f(u, v)ν(u → v)dµ(u) =

∫

∑

u

f(u, v)ν(v → u)dµ(v)

for non-negative invariant f .

5.3. Integral geometry. See [19, pages 125–127] and the “extra-remarks”

on page 128.

Theorem 18: Let G be a discrete measured groupoid and Σ be a G-quasi-

periodic simplicial complex of dimension 2 and finite covolume with respect to

µ. Assume that there is a real number δµ > 1 such that δ−1
µ 6 δ(u, v) 6 δµ for

almost all edges (u, v) in Σ(1) and that almost each link L of Σ is connected.

Let Y be a field of CAT(0) spaces such that

λ1(L, Y x) > λ > δ3
µ/2

for a real number λ independent of L and x. Then for any isometric action of

G on Y and any equivariant map f : Σ → Y with
∫

Σ

∑

(u,v)∈Σ(1)

|f(u) − f(v)|2dµ(u) < ∞,

there is an equivariant map f : Σ → Y at finite L2-distance from f which is

constant on almost each realization. In particular, G has a fixed point in Y

provided such a map f exists.
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Proof. Denote by Lu the link of a vertex u of Σ, τ(u, v) the number of triangles

in Σ containing the edge (u, v) ∈ Σ(1), and τ(u) the number of triangles attached

to u. Let f ∈ L2
G(Σ, Y ), where L2

G(Σ, Y ) is centered at f. By hypothesis we

have

1

2τ(u)

∑

v,w∈L
(0)
u

|f(w) − f(v)|2τ(u, v)τ(u, w) ≤ 1

λ

∑

(v,w)∈L
(1)
u

|f(w) − f(v)|2.

Let’s integrate this inequalities.
∫

Σ

∑

(v,w)∈L
(1)
u

|f(w) − f(v)|2dµ(u)

=

∫

Σ

∑

(v,w)∈Σ

∑

(u,v,w)∈Σ

|f(w) − f(v)|2δ(u, v)dµ(v)

=

∫

Σ

∑

(v,w)∈Σ

|f(w) − f(v)|2τδ(v, w)dµ(v)

where

τδ(v, w) =
∑

(u,v,w)∈Σ

δ(u, v)

and
∫

Σ

1

2τ(u)

∑

v,w∈L
(0)
u

|f(w) − f(v)|2τ(u, v)τ(u, w)dµ(u)

=

∫

Σ

∑

w∈Σv

|f(w) − f(v)|2
∑

L
(0)
u 3v,w

1

2τ(u)
τ(u, v)τ(u, w)δ(u, v)dµ(v)

=

∫

Σ

∑

w∈Σu

|f(w) − f(v)|2τδ(v, w)dµ(v)

where

τ δ(v, w) =
∑

L
(0)
u 3v,w

1

2τ(u)
τ(u, v)τ(u, w)δ(u, v).

Define

τδ(v) =
1

2

∑

(u,v)∈Σ

δ(u, v)τ(u, v).

One has
∑

w∈Σv

τδ(v, w) =
∑

w∈Σv

τ δ(v, w) = 2τδ(v),
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so that, putting

ν(v → w) =
τδ(v, w)

2τδ(v)

and

ν(v → w) =
τ δ(v, w)

2τδ(v)

we get a Poincaré inequality,
∫

Σ

∑

w

|f(w) − f(v)|2ν(v → w)dµ′(v) ≤ 1

λ

∫

Σ

∑

w

|f(w) − f(v)|2ν(v → w)dµ′(v)

where dµ′(v) = 2τδ(v)dµ(v). Let us note that µ′ is symmetric relatively to ν et

ν. Then we have

ν2(v → w) =
∑

L
(0)
u 3v,w

τδ(v, u)

2τδ(v)

τδ(u, w)

2τδ(u)
.

By the hypothesis τδ(u, v) 6 δµτ(u, v), τδ(u, w) 6 δµτ(u, w) and τδ(u) >

τ(u)/δµ ; so

ν2(v → w) 6 δ3
µν(v → w)

and we get the following Poincaré inequality

Eν2(f) 6
δ3
µ

λ
Eν(f).

Thus the diffusion ν has a fixed point in Y provided that λ > δ3
µ/2.

Remarks 19: 1. - It would be interesting to obtain a similar result without the

finite energy assumption.

2. - Working with Wang’s definition [32] of the constant λ1 immediately leads

to the inequality 1
2

∫

Σ

∑

w |H
1
→f(w) − f(v)|2ν(v → w)dµ′(v) ≤ πδµEν(f), with

the notations of the proof, showing in particular the absence of non-constant

harmonic maps in L2
G(Σ, Y ) under the local assumption πδµ < 1. Depending

on the situation, it may be possible then to show directly the existence of

harmonic mappings (thus proving the fixed point theorem), for instance under

local compactness assumptions on the target space or via scaling limits, see

[31, 32], [19, pages 107 and 127]. See also [21]. The advantage of Wang’s

definition is that it is controllable in terms of the tangent cones of the target

space; for instance its computation for Hadamard manifolds reduces to the case

of the real line.
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3. - If the action on Y has a fixed point y, then for every map f : Σ → Y at

L2 distance 1 from this fixed point with sufficiently low energy, the heat flow

starting at f converges to a fixed point different from y (cf. Proposition 17). For

Y a field of Hilbert spaces this implies Kazhdan’s property T (compare [17]),

but general (fields of) CAT(0) spaces, including some affine buildings, may have

small isotropy group(oid)s.

6. Harmonic analysis and foliated rigidity

6.1. Proof of Corollary 1: rigidity of projections into non-positi-

vely curved laminations.

Proof. Let Σ be the measurable field of simplicial complexes associated to the

triangulation K (the 1-skeleton of the fiber Σx at x ∈ X is the graph of the class

of x, and its 2-dimensional simplicial structure is given by attaching a triangle

to each 3-cycle in K). This gives a R-quasi-periodic simplicial complex Σ with

finite covolume.

Define Y ′ to be the field of manifolds whose fiber at p ∈ X ′ is the leaf `p

passing through p, endowed with the structure of measurable field of metric

spaces coming from a foliated atlas of M . Then Y ′ is endowed with an obvious

isometric action of R′ which, when pulled back t o X , give an isometric action

of R on the measurable field of manifolds Y whose fiber at x ∈ X is the leaf

passing through π(x). The map π extends to an equivariant Borel mapping

q from Y to Y ′, defined by q(x, y) = (π(x), y) for (x, y) ∈ Y . Let ρ be the

projection from Y ′ to Y ′/R′. Note that Y ′/R′ is a Borel subset of F .

View the homomorphism π as a section of Y and extend it by equivariance

to a map f : Σ → Y (hence f is zero on Σ\Σ(0)). Let L2
R(Σ, Y ) be the space

of equivariant maps from Σ to Y which are at finite distance from f. By our

assumptions λ1(L, Y x) ≥ λ > 1/2 and f has finite energy so harmonic anal-

ysis applies (Theorem 18) to give an equivariant map ξ ∈ L2
R(Σ, Y ) at finite

distance from f and constant on the fibers of Σ. In particular ξ descends to

a measurable section ξ : X → Y . In turn this gives us a measurable map

η = ρ ◦ q ◦ ξ : X → Y ′/R′ such that η(x) ∈ `π(x) almost surely. It follows from

equivariance of ξ that η is constant on almost every orbit of R. As µ is ergodic,

this implies that η is essentially constant on X . The essential image of π is then

a countable subset of the leaf containing the essential image of η.
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6.2. Proof of Corollary 2: orbit equivalence rigidity.

Proof. Note that the assumptions imply that R has Kazhdan’s property T, see

[28]. Let Σ be the 2-dimensional quasi-periodic simplicial complex associated

to K as above, with fundamental domain F and finite covolume µ. Consider

an action ρ of Γ on Y , and the associated action of R′ on X ′ × Y . Pull it back

to an action of R on X ×Y , fix a point y0 ∈ Y , and denote by f the equivariant

map from Σ to X × Y whose value on F is y0. Let L2
R(Σ, Y ) be the space of

equivariant map from Σ to X × Y which are at finite distance from f. We have
∫

Σ

∑

(u,v)∈Σ(1)

|f(u) − f(v)|2dµ(u) =

∫

Σ

∑

(u,v)∈Σ(1)

|y0 − c(π(u, v))y0|2dµ(u)

≤ C2

∫

Σ

∑

(u,v)∈Σ(1)

|c(π(u, v))|2Γdµ(u) < ∞,

where the metric in Γ is relative to a finite symmetric generating set S, and

C = sups∈S |y0−ρ(s)y0|. Thus there is an equivariant map f ∈ L2
R(Σ, Y ) which

is constant on the fibers of Σ. Then
∫

X

|y0 − f(x)|2dµX(x) ≤
∫

X

∑

u∈F x

|y0 − f(u)|2dµX(x)

=

∫

Σ

|f(u) − f(u)|2dµ(u) < ∞,

so that f∗µX ∈ P2(Y ) admits a center of mass z ∈ Y . For γ ∈ Γ and y ∈ Y , we

have
∫

X

|γy − f(x)|2dµX(x) =

∫

X

|y − f(γx)|2dµX(x) =

∫

X

|y − f(x)|2dµX(x)

by invariance of µX . This shows that z is a fixed point for the action of Γ.
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